
NASA Contractor Report 194943

ICASE Report No. 94-54 AD-A284 422hll miii mit. |li

..D'ICASE
DIRECTIONS IN PARALLEL PROGRAMMING:
HPF, SHARED VIRTUAL MEMORY AND
OBJECT PARALLELISM IN pC++

DTIC
SEP 14 1994

Francois Bodin
Thierry Priol F
Piyush Mehrotra
Dennis Gannon t

(AQ(ftJ9 4 - 2 9 7 7 9

Contract NASI-, 19480 11I3I1111111111i11 "+1!1111 !i1!1111111+
June 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0(X) l

DTIC QUALIaTY uio

~ Operated by Universities Space Research Association

Best'
Avai~lable

Copy

Directions in Parallel Programming: HPF, Shared Virtual Memory
and Object Parallelism in I)C++*

Franpois Bodina Thierry PrioP Piyush Mchrotrab Dennis (annon'

'Irisa, University of Rennes, France
bICASE, MS 132C, NASA Langley Research Center, Hampton VA. 23681 USA

cDepartment of Computer Science & CICA Indiana University, Bloomington, Indiana. U.S.A.

Abstract

Fortran and C++ are the dominant programming languages used in scientific comp)utation.
Consequently, extensions to these languages are the most popular for programming massively

parallel computers. We discuss two such approaches to parallel Fortran and one approach t.o

C++. The High Performance Fortran Forum has designed HPF with the intent of supporting

data parallelism on Fortran 90 applications. H PF works by asking the user to help the compiler

distribute and align the data structures with the distributed memory modules in the system.

Fortran-S takes a different approach in which the data distribution is managed by the operating

system and the user provides annotations to indicate parallel control regions. In the case of
C++, we look at pC++ which is based on a concurrent aggregate parallel model.

Accesion For

NTIS CnA&I
DTIC TAB r

BUy......oc

By
DistributionI

Availabitly Codes

Avail and lo
Dist Spccial

*This research is supported by DARPA under contract AF 30602-92-C-0135 from Rome Labs, National Science
Foundation Office of Advanced Scientific (Computing under grant AS(-9111616 and Esprit BRA APPARC and by
the National Aeronautics and Space Administration under NASA contract NAS1-19480 while one of the author,, was
in residence at IASE, Mail Stop 132C, NASA Langley Research (!enter, Htampton, VA 23681.

DTIC QUALi

1 Introduction

Exploiting the full potential of parallel architectures requires a cooperative effort between the user
and the language system. There is a clear trade-off between the amount of information the user
has to provide and the amount of effort the compiler has to expend to generate optimial parallel
code. At one end of the spectrum are low-level languages where the user has full control and has
to provide all the details while the comlpiler effort is minimal. At the other end of the spectrum is
sequential languages where the compiler has the full responsibility for extracting the parallelism.
Clearly, there are advantages and disadvantages to both approaches.

Explicit-tasking Languages

Current programmfing environments for parallel machines follow the first approach providing low-
level constructs such as message-passing primitives as their principal language constructs. In such
programming environments, an algorithm is specified as a set of sequential processes which exe-
cute concurrently, synchronizing and sharing data explicitly via messages. Since such environments
directly reflect the underlying hardware, such an explicit-tasking approach allows the user to effec-
tively exploit the full potential of tlie machine.

However, for data parallel algorithms, as one typically finds in scientific programming, such
environments have proven quite awkward to use. The basic issue is that programiners tend to
think in terms of synchronous manipulation of distributed data structures, such as grids, matrices,
and so forth, while the languages available provide no corresponding language constructs. The
hardware support for must current architectures is such that locality of data is critical for good
performance. Thus, the programmer must decompose each data structure into a collection of
pieces, with each piece "owned" by a single processor. All interactions between different parts of
the data structure must then be explicitly specified using the low-level data sharing constructs such
as message-passing statements supported by the language.

Decomposing all data structures in this way, and specifying communication explicitly, leads to
programs which can be extraordinarily complicated. Experience has shown that message-passing
versions of algorithms can be five to ten times longer than the sequential version. This code expan-

sion hides the original algorithm among the details of low-level communications. Programs written
in low-level languages also tend to be highly inflexible, since the partitioning of the data struc-
tures across the processors must be incorporated in all parts of the program. Each operation on a
distributed data structure turns into a sequence of "send" and "receive" operations intricately em-

bedded in the code. This "hard wires" all algorithm choices, inhibiting exploration of alternatives,
as well as making the parallel program difficult to design and debug.

Direct Compilation of Conventional Languages

The second approach to programmlhing niultiprocessors, direct compilation of conventional languages
for parallel execution, provides a number of imnportant advantages. First, it allows programmers
to continue using familiar languages as they move to newer and more complex machines. Second.
there is a large body of existing programs which can be transported to parallel architectures without
change. Third, the details of the target architecturP are invisible to the prograimmlier, so the complex

load-balancing and program design issues, which must Ie faced with the explicit-tasking languages,
are not present.

This approach is, in a real sense, a direct outgrowth of successful research in construction of
vectorizing compilers, and is currently being actively explored by several research groups [6, 7.
26, 51, 56, 63, 65). Since the millions of lines of existing sequential programs cannot be easily
replaced, nor are they readily modifiable, there is clear importance to this approach, anm it will
surely continue.

There are, however, a number of difficulties with this approach. The major one is that the
semantics of conventional languages strongly reflects the sequential von Neumann architecture.
making the task of automatic restructuring very difficult. Extracting parallelism from such pro-
grams requires very aggressive data-flow analysis including array subsection and inter-procedural
analysis. Moreover, existing languages, especially Fortran, encourage programming styles which
make it extremely difficult for compilers to extract much parallelism. Freely "equivalenced" arrays.
and passing of "pointers" to simulate dynamic allocation, severely himit the compiler's ability to
extract parallelsm.

Also, once the parallelism has been exposed. it has to be mapped onto the target architecture.
The appropriate mapping, including the distribution of data and work across the processors. is
critically dependent on the characteristics of the program and also that of the target machine.
Because the general mapping problem has been shown to be NP-complete the heuristic algorithms
used tend to generate sub-optimal code. Given all these problems, the end result seems to be
that direct compilation of sequential languages can extract only modest amounts of loop-level
p• ralleism.

The Alternative: Modest Language Extensions

As argued above, the state of the art in advanced compiler design is not yet up to the task of
parallelizing a sequential application for execution on a massively parallel system with a complex
memory hierarchy. Consequently, the programmer must participate in this process. While there is
a wide variety of new parallel programming languages that help solve this problem, we will focus
attention on three approaches based on modest extensions and annotation systems for Fortran and
C'++. The goal of each system is to provide high performance and portability across the three
prevailing classes of computer architectures which are distinguished by the memory model they
present to the programmer.

True Shared Memory. The address space is global to the machine and access to memory is
uniform. Examples of this class include the CRAY C90 and the SGI Power C(hallenge Series.

Shared Memory with Non-Uniform Memory Access (NUMA). The address space is global
to the machine and access to memory is non uniform, i.e., access time depends on the address
and the processor doing the data access. Examples of this class include the BBN TC2000,
the C'RAY T3D and the Convex MPP.

Distributed Memory Architecture: The address space is local to each processor and access to
remote data is done usually via message passing. Examples here include the Intel Paragon,
nCube, Parsytec, Meiko and Thinking Machines CM-5.

2

Because the first two categories provide a global address space ior referencing data, they are the
closest to the model most familiar to users. Consequently, the most direct way to make all three
share this property is to build an operating system layer for the distributed memory machines that
provides a "shared virtual memory" model on top of the native message passing system. Given
such a system, any Fortran or C program can execute without modification on the machine. The
problem is then reduced to providing a way for the compiler to partition parallel loops and schedule
access to shared objects. Fortran-S, designed at IRISA is one such system. In the paragraphs that
follow, we shall describe many of the important ideas that go into the construction of a shared
virtual memory operating system and the Fortran-S compiler.

Fortran-S uses program annotations to partition control and the operating system automatically
partitions the data. An alternative strategy is to ask the user to specify the way the data should be
partitioned and have the compiler decide how to partition the control. High Performance Fortran
(HPF) follows this approach. While HPF code could be compiled for a shared virtual memory, most
systems will use the compiler to generate explicit message passing on distributed memory machines.
In the third section of this paper we describe the HPF model and the language annotations and
extensions required to implement it.

A third approach which combines the features of both HPF and shared virtual memory is pC++
which is based on a language extension, called concurrent aggregates, which allows the programmer
to define a set of distributed objects which may be referenced from any processor in this system.
As with HPF, the user provides information to the system about how the data objects should be
partitioned among the system memory modules. However, communication between objects uses a
mechanism based on the SVM paging model, but instead of migrating pages of data, copies of data
objects are migrated. In the last section of this paper we describe pC++ and its execution model.

In this paper we have not described other promising approaches. Among these are functional
programming languages such as SISAL [43] and ID, and task parallel systems such as CC++ [31],
Linda [5], Fortran-M or that proposed in [13].

2 Fortran-S and Shared Virtual Memory

Programming with shared-memory or NUMA is usually simpler than programming distributed
memory architectures because they offer a global view of the memory where distributed memory
architectures let the user deals with data exchanges between processors by means of messages
passing. Shared memory architectures are attractive from the programming point of view but
they cannot afford scalability. As the number of processors increases the cost of the switch used
to connect memory to processors increases very fast, and may even not be built at the required
speed. Fully distributed memory architectures, on the other end, are scalable but do not offer to
the programmer a single address space, making programming more complex.

For programming distributed memory architectures, approach as H PF proposes a global address
space to the programmer and fills the gap between the programmer model and the machine by using
sophisticated compiler techniques and the help from the programmer who is in charge of specifying
at a high level the data distribution on the processors. Another alternative consists in providing
the functionalities of a shared memory (it becomes virtual in this case) either implemented using
hardware support or using operating system support. This approach makes distributed memory

3

architectures look like NUMA architectures which makes programming simpler and the compiler
much easier to design.

2.1 Shared Virtual Memory

A Shared Virtual Memory (SVM) provides to the user an abstraction from an underlying memory
architecture of a distributed memory parallel computer (DMPC). This memory abstraction is also
named VSM (Virtual Shared Memory), DSM (Distributed Shared Memory) [37], etc. We will use
SVM to name this memory abstraction. An SVM [39] is somewhat similar to the one which is
currently used on classic mainframe computers. However, it differs in the fact that this virtual
memory is shared by several processors. It provides a virtual address space that is shared by a
number of processes running on different processors of a distributed memory parallcl computer.
The virtual address space is made up of pages* which are spread among local processor memories
according to a mapping function. Compared to a global address space available on shared memory
parallel computers (SMPCs), SVM relies on page caching and heavily on spatial locality. A global
address space, like the one available on the BBN, usually allows access to a single word through the
use of a fast interconnection network. In most cases DM PCs are loosely coupled architectures that
have a high latency network. Accessing the data at a page level absorbs this high latency when
spatial locality is exposed. Since the granularity of the data accesses is a page. several problems
arise. For example, how does one keep pages coherent that are stored in several caches? How do
we locate an up-to-date copy of a given page within the architecture? What happens when there
is not enough room in a cache?

The first problem is related to cache coherence. Since processors may have to read from or to
write to the samne page, several processors have a copy of a page in their cache. If one processor
modifies its copy, other processors run the risk of reading an old copy. A cache coherence protocol
is needed to ensure that the shared address space is kept coherent [12]. A memory is considered to
be strongly coherent if the value returned by a read from a location of the shared address space is
the value of the latest store to that location [12]. In most cases, implementation of strong coherence
in a SVM for DMPCs is based on an invalidation mechanism. It assumes that there is only one
copy of a page with write access mode at a given time or, if there is multiple copies of a page, each
of them are in read-only access mode. The processor that has written most recently into the page
is called the owner of the page. When a processor needs to write to a page, that is not present in
its cache or is present in read-only mode, it sends a message to the owner of the page in order to
move it to the requesting processor. It then invalidates all the copies in the system by sending a
message to the relevant processors. This invalidation strategy seems to be the best approach for
DMPCs. The faulting management mechanism of a MMU is sufficient to implement this approach
efficiently.

The second problem is called page ownership. When a processor needs to access a page, either in
write or read access mode, which is not located in its cache, it must ask the owner to send it a copy
of the page. This problem is related to the cache coherence protocol described previously. With the
invalidation protocol, there is always one owner for a page and the ownership changes according
to the page requests coming from other processors. Therefore, the problem is how to locate the
current owner of a given page considering that the owner of a page changes. A solution is to uipdate

*the granularity afforded by hardware virtual memory

4

a database that keeps track of the movement of pages in the system. This database can be either
centralized or distributed [39]. In the centralized approach, a processor (called the manager) is in
charge of updating the database for every page. When a processor needs a page, it sends a request
to the manager which forwards the request to the owner of the page. Consequently, the manager
is aware of all the movement of pages in the system. However, it may be a bottleneck since the
manager processor receives requests from all other processors. The user's process running on the

manager will be interrupted frequently and this approach will also create potential contention in
the network. Distributing the database over several processors is a means to avoid these drawbacks.

The last problem is called page swapping. The problem arises when a processor is the owner
of all the pages located in its cache and there is no more space in the cache. If it requests a new
page, it has to find space in its cache. It cannot throw away a page from its cache since it owns
all the pages. Therefore, pages have to be moved on an external high speed storage device, like

disks. Some implementations, such as KOAN [34], use the other local memory for swapping page.
However, the size of the virtual address space is bounded by the sum of all local memory.

The implementatiou of SVM mechanisms is done mostly by software: page requests are pro-
cessed by the operating system running on each node. This implementation involves a substantial
overhead since, user's processes have to be stopped by the operating system to resolve page re-
quests. This task could be done by using dedicated VLSI hardware sucli is done with the KSR [2]
machine and SCI bus-based parallel architectures [1] such as the new Convex MPP

2.2 Why Shared Virtual Memory May Not Work

Shared Virtual Memory has many intrinsic problems. In the following paragraphs, we discuss some

of them.

Initial Page Distribution

The initial page distribution may lead to cold start misses, however this has a marginal effect on
performance. After the beginning of the application, pages migrate to processors according to data

accesses.

Page Thrashing

Page thrashing can lead to capacity misses. For instance consider the following loop:

doall i =1,n
do j = 1,n

A(j,i) = f(..., B(i,j),...)
enddo

enddo

Due to the Fortran column-wise data layout, each access to matrix B will create a page fault if it
is large enough. In that case interchanging the loop would not help, but loop blocking would.

False Sharing

False Sharing occurs when more than one processor, at a time, writes to the same page. The strong
coherence mechanism ensures that each processor writing into a page sees the last modification of
it. For example, consider the following loop.

doall i 1 1,n
ACi) f(.....)

enddo

Assuming that A is allocated in a shared address space and is only stored into one page, when

increasing the number of processors the page will exhibit a ping-pong phenomena. That is, the

page will move back and forth between processors, each write costing one page fault at worst (each
word written will cost a data transfer of the size of the page). The execution of the loop becomes

sequential because a page manager will serve only one page request at a time. This phenomena

may severely degrade performance. However by increasing the size of the vector this phenomena

may become negligible.

Barrier

When programming using message passing, synchronization between processes comes for free; data

exchanges synchronize processes. When using shared variables, synchronization must be inserted
to ensure data dependences between processes. However synchronization does not have to be

implemented using shared variables. Most system support some sort of barrier operation which can

be used as the primary synchronization mechanism. If the barrier is too slow, serious performance
problems may result.

Broadcast

A drawback of shared virtual memory on DMPCs is its inability to run efficiently parallel algorithms
that contain a producer/consumers scheme. In these cases, a page is modified by a processor and

then it is accessed by the other processors. Since all page requests are sequentially processed by a
page manager the accesses to the data are done sequentially. This obviously constitutes a serious

bottleneck when the number of processors grows.

2.3 Why Shared Virtual Memory May Work

Shared virtual memory may work surprisingly well (see section 3.3) for the following reasons.

Vectorized Page access to data (block transfer)

Transferring a page makes efficient use of the network, masking most network latencies. There

is clearly a tradeoff when choosing the page size. A large page size makes efficient use of the

network, but increases the amount of unnecessary data transferred and false sharing becomes a
greater problem. A small page size transfers a greater percent of useful data and decreases false

sharing, but it makes inefficient usage of the network. To deal with a small transfer size on the

KSR, where subpages of 128 bytes are the basic transfer unit, prefetch and poststore facilities are

used to hide large access latencies.

6

P2 P P3 R

Local Local Local Local Local Local
data data data data data data

shared shared shared shared
shared shared data data data data
data data

memory memory memory memory
memory memory for page for page for page for page
for page for page [:1 caching caching caching caching
caching caching

Figure 1: Allocation of data in memory, assuming 2 processors and assuming 4 processors, in the
case of 4 processors more memory can be devoted to page caching

Page caching allows the exploitation of data locality

Page caching is the only way to compensate for the cost of moving a page between processors. This
decreases the size of the effective SVM. Indeed the page caching memory is the remainder of the
memory not used by the local data and the shared data. At some point if data are too big the
remaining memory may be too small to keep pages necessary for an algorithm to behave efficiently.
The main advantage of SVM over other mechanisms is that, even when locality properties of the
program cannot be discover at compile time, the SVM can still exploit it. In this respect Shared
Virtual Memory addresses the same problem as the Parti inspector/executor scheme [66].

All variables do not have to be shared

Only variables that are bubject to parallel computation should be shared. Sharing all variables

leads to very inefficient code.

Not all parallel computations depend on the SVM

For example, exploiting reduction parallelism is usually not done using shared virtual memory.
Instead it can be implemented by the compiler by using message passing.

The Compiler Can Help A Lot

Compiler technique can hell) by optinizing programs so that they make better use of the vir-
tual shared memory and also by decreasing the number of synchronizations in the program (i.e.
decreasing the number of barriers).

2.4 Parallel Loop Scheduling and Shared Virtual Memory

Parallel loops scheduling is a critical issue in a programnling environment that relies on shared
virtual memory. Data movements are in charge of the system/hardware where loop scheduling is in
charge of the compiler/user. Good scheduling has to ensure data locality and load balancing. Bad
loop scheduling may result in many unnecessary page migrations, false sharing or an unbalanced

7

load. It should be noted that techniques such as self guided scheduling are not very well suited to

shared virtual memory, because as the execution of a parallel loop proceeds, the size of blocks of

iterations that are assigned to processors decreases. Consequently, false sharing increases. However,

when associated with a cache coherence protocol that allows concurrent access to the same page,

this technique may become adequate if it can be implemented efficiently on massively parallel

distributed memory architecture.

There are two main scheduling techniques that are well suited to shared virtual memory because

they can be used to reduce data movements. The first technique addresses the problem of false

sharing especially when strong coherence protocols are used, and the second technique is concerned

with data reuse across loops. In addition, they can be used together to provide good locality and

to decrease the false-sharing:

Page Aligned Scheduling

Page aligned scheduling can be used to reduce false sharing. The principle consists of distributing

iteration such that chunks of iterations allocated on processors are aligned with page boundaries.

For example, if we use a simple block scheduling strategy of a simple loop:

do i = 1, N
A[i] = A[iM +

enddo

we get:

bf f ceiling(N/P)

doall pid = lN,bf

do i= pid,min(pid+bf-1,N)

AMi] = Ali] +
enddo

enddo

If NIP is not a multiple of the page size there will be false-sharing for each page shared by two

processors. A simple solution in that case is to consider a blocking factor bf that take into account

the page size (assuming A[l] is aligned on a page boundary):

bf = ceiling(ceiling(N/pagesize)/P) * pagesize

doall pid - 1,N,bf
do i= pid,min(pid+bf-1,N)

A[i] = Ati) .+

enddo
enddo

However this technique does not always balance the workload. In general, this technique works

well when the amount of data is large. A more complete description of the method is given in [25].

8

Affinity Scheduling

The affinity scheduling tries to minimize data movement by allocating iterations to processors
according to data location [421. An affinity scheduling technique is provided on the KSR1 machine.

It should be noted that dynamic scheduling, to improve load balancing, can be implemented
with SVM but on distributed memory architectures the implementation of such a technique is
usually very costly at runtime.

2.5 Compiler Optimizations for SVM

Compiler optimization for Shared Virtual Memory consists in increasing data locality, and thus
minimizing data transfers. Optimization consists of removing shared variables as much as possible,
changing the data layout, and applying loop transformations to improve locality without killing
the load balance.

Removing Shared Variables

In some cases, it is possible to localize shared variables. The idea behind this optimization relies on
the compilers capability of detecting access to data structure that are disjoint between processors.
Compiler techniques used in this case are very close to the ones used for compiling FortranD and
HPF programs. [62, 30].

Array Padding and Data layout

The Array Padding operation consists of extending array dimensions such that dimensions of the
array are aligned with page boundaries. This reduces false-sharing because different vectors of the
array do not share any pages. The main disadvantages of this technique are that it wastes memory
(and so decreases the size of the memory that can be allocated to the cache) and also that this may
increase the amount of communication (unused data are loaded when accessing useful data). More
generally, data layout optimization tries to store data so that it minimizes false sharing [61, 18].

Optimizing Data Locality

Optimizing data locality relies on changing the access order to data structure so that it increases
the spatial locality of a loop or it exploits better temporal locality. Loop transformations like loop
interchanging, blocking, unimodular transformation may be used. When temporal locality exists,
it may be possible to exploit data locality using localization of a portin of an array section that
is subject to reuse. These techniques are common to global address space optimization and cache
locality optimization. For example, considering the following loop.

doall i=l,n
do j = 1,n

do k =1,n
A(k,i) = f(...,A(k,i))

enddo

enddo

enddo

9

It can be transformed into

doall iml,n
do tfl,n

temp(t) U A(ti)
anddo
doj i= 1,n

do k =l,n

temp(k) = f(... ,temp(k),...)
anddo

enddo
do tiol,n

A(t,i) - temp(t)
enddo

enddo

where temp is allocated locally on processors. This optimization may reduce the number of page
faults and th(false-sharing. It should be noted that the array temp is the reference window as

defined in [21, 9]. The cost of the copy is amortized by exploiting the temporal locality. However if
there was no page thrashing and no false-sharing on array A in the original loop, there is no gain in
using this transformation. When applying this kind of optimization, the size of temporaries must
be limited. These techniques [63, 4, 41, 3, 23, 64, 55, 16, 44] are well known but usually targeted for
hardware cache or local memory. Most of these techniques should be revisited to take into account
tue characteristics of shared virtual memory and it, particular the false sharing phenomena.

Barrier Removal

When :iogramming with a shared memory model (especially when the execution model is SPMD)
synchronization between processes relies on barriers. One optimization the compiler cai, perform is

to decrease the number of synchronization in the program. More generally, part of the optimization

process consists in removing, as much as possible, calls to the runtime system.

2.6 Runtime Optimization for SVM

In some case, support for optimizations may come from system capabilities:

Weak Coherence

Several weak cache coherence protocols have been studied in the past. Each of them has some
properties that can be exploited in a specific context [50, 57]. A modified version of the strong
coherence protocol can be considered as a weak cache coherence protocol. If data accesses are

made in different memory locations, it allows processors to modify their own copy of a page,
without invalidating copies in other processors. When restoring the strong c(cherence protocol, all

the copies of a page which have been modified are mlerged into a single page that reflects all the
changes. From the programmer's point of view, the memory is always strongly coherent at a word

level but is veak coherent at a page level. However such weak coherence scheme does not come

10

for free; its cost depends (usually linearly) on the maximum number of page copies there are to
merge at end of the page weak coherence phase there is to perform. Weak Coherence protocol can
be used for parallel loops because there is no data dependence between iterations of the loops and
so no several writes to the same word of a page are performed by several different iterations,

Page Broadcast

Producer/consumers scheme can be efficiently managed by using the broadcasting facility of the
underlying topology of DMPCs (hypercube, 2D-mesh, etc.). All pages that :tct.e been modified by
the processor in charge of running the producer phase are broadcast to all other processors that
will run the consumer phase in parallel. Since the producer has to keep track of all pages that
have been modified, two new operating system calls have to be added in the user's code in order
to specify both the beginning and the ending of the producer phase.

Page locking

Page locking allows a processor to lock a page into its cache until it decides to release it. This basic
mechanism can be used to implement atomic update in a memory location. The user is responsible
for adding two system calls that specify the beginning and the ending of the code section where
each remote data access requires a page to be locked into the cache. Page locking is very efficient
and minimizes the number of critical sections within a parallel code. On loosely coupled parallel
architectures, such as DMPCs, using critical sections are time expensive. To illustrate this, let us
take a small example such as a matrix assembly found in finite element applications. A loop is
used to scan an irregular mesh and values are accumulated into a matrix. Access to this matrix is
made by through an index scheme and there are often runtime data dependences. Consequently the
loop can be parallelized if the accumulation is executed within a critical section to avoid multiple
processors writing at the same time to the same matrix element. A page locking mechanism can
replace many critical sections. Before updating a matrix element, the page that contains the matrix
element is locked into the cache and then release after the update. The cost of such synchronization
is simply related to the number of processors that access to the same page at the same time.

2.7 Mixing Messages and Shared Virtual Memory

Mixing of message passing and shared variables can be used to improve performance in library
code. When dealing with shared variables and messages, programming is somewhat simplified
since the programmer does not have to worry about the data distribution. The programmer only
has to think in term of parallel processes. One of the main auvantage of this approach, is that
an efficient algorithm may be implemented independently of the program it is called from. For
example, consider the in-place matrix transpose. This algorithm behaves very badly with SVM
when data transfer is at the level of pages. But by using message passing to do the transpose, it

is possible to get speedup on this operation. The algorithm can be written so it is independent
of the data distribution of the matrix. In a pure message passing programming environment, it is
not possible to provide such a primitive without forcing the programmer to use a predefined data
distribution of the matrix on the processor, this data layout that may be completely inadequate in
the remainder of the application.

11

3 Fortran-S: a Prototype Environment for SVM

Fortran-S is a Fortran programming environment that relies on the shared virtual memory KOAN,

The programming model is based on shared variables and parallel loops. Parallel loops and shared
variables are declared to the compiler via directives. The project's main goal is to study compiler

and programming environment for shared virtual memory. Fortran-S differs from the KSR-Fortrani

mainly in the execution model. KSR-Fortran relies on fork-and-join execution (i.e. the main thread

is spawn in multiple threads when parallel phases of execution occur) where Fortran-S relies on a

SPMD execution model (i.e. a thread is created on every processor during the loading phase). To

illustrate Fortran-S, we provide the following small example:

real v(n,n)
C$ann[Shared(v)J

doi = 1,n
trap = 0.0
do k = 1,n

trup = trap + v(k,i)*v(k,i)

enddo
"Knorm = 1.0 / sqrt(tmp)
dok = l,n

v(ki) = v(ki) * xnorm

enddo

C$annjDoS hared(" BLOCK")K
doj = i+ 1,it

tMp = 0.0
do k = l,n

trap = trap + v(k,i)*v(kj)

enddo
dok = 1,n

v(kj) = v(kj) - tmp*v(k,i)

enddo
enddo

enddo

This is a parallel version of the Modified Gram-Schmidt algorithm. It is made up of two

nested loops. The outer loop normalizes each vector stored in the matrix v. When a vector is

normalized, the remaining vectors in the matrix are then corrected by executing the inner loop.
These corrections can be done in parallel. By adding, two Fortran-S directive, the code generator

is able to generate a SPMD code that will be executed in every processor. The first directive

(CSann[Shared(v)]) specifies that matrix v has to be stored in the shared virtual memory, since
it will be upd,:ýted within a parallel loop. Other variables are replicated in the local memory of

each processor. Every processor executes the outer loop as well as all assignments that modify

a local variable. However, for each outer loop iteration, only one processor updates the shared
variable v(k,i)). (In the previous example, every processor will write into replicated variables tirp

12

and xnorm.) The second directive (C~ann[DoShared(" BLOCK")) indicate that the following loop is
a parallel loop. Each processor is in charge of executing a chunk of the iteration space. A detailed

cription of Fortran-S can be found in fil].

3.1 KOAN Runtime

The KOAN SVM is embedded in the operating system of the iPSC/2. It allows the use of fast and
low-level communication primitives as well as a Memory Management Unit (MMU). The KOAN
SVM implements the fixed distributed manager algorithm as described in [39) with an invalidation
protocol for keeping the shared memory coherent at all times. A detailed description of the KOAN
SVM can be found in [341. Let us now summuarize some of the functionalities of the KOAN SVM
runtime.

WOAN SVM provides the User with several memory management protocols for efficiently han-
dfing special memory access patterns. One of these is when several processors have to write into
different locations of the same page. This pattern involves many messages since the page has to
move from processor to processor (as with the pin g-pong effect or false sharing). At a cost of adding
some new subroutine calls in the parallel code, KOAN can let processors concurrently modify their
own copy of a page.. Another drawback of shared virtual memory on DMPCs is its inability to
run efficiently parallel algorithms that contain a producer/ consumers scheme: a page is modified
by a processor and then accessed by the other processors. KOAN SVM can efficiently manage this
memory access pattern by using the broadcasting facility of the underlying topology of DMPCs
(hypercube, 2D-mesh, etc.). All pages that have been modified by the processor in charge of run-
ning the producer phase are broadcast to all other processors that will run the consumer phase in
parallel. KOAN SVM Provides barrier synchronization as well as subroutines to manage critical
sections. These features are implemented by using messages instead of shared variables. KOAN is
compatible with the NX/2 operating system, i.e. primitives provided by the system can be used
simultaneously with KOAN.

We have performed measurements in order to determine the costs of various basic operations
for both read and write page faults (the size of a page is 4 K bytes) of the KOAN shared virtual
memory. For each type of page fault (read or write), we have tested the best and worst possible
situation on different numbers of processor.,. For a 32-processor configuration, the time required to
resolve a read page fault is in the range of 3.412 ins to 3.955 ills. For a write page fault, timing
results are in the range of 3.447 ?ns to 10. 110 mns depending on the number of copies that have to
be invalidated. These results can be compared with the communi cation timies of the iPSC/2: the
latency is roughly 0.3 mns and sending a 4 Kbytes miessage (a page) costs between 2.17 ills and
2.27 ills depending on the number of routing.

3.2 Fortran-S Code Generator

Fortran-St relies on parallel loops to achieve parallelism. Parallel execution is achieved using
the SPMD execution model (Single Program Multiple Data). At the beginning of the program
execution, a thread is created on each processor andl each processor starts to execute the program.
One of the main functions of the Fortran-S compiler is to make the SPMD execution to look like a

tThe prototype compiler has been implemented using the Sigma System [22]

13i

With strong coherence

proc. 100 X 100 200 x 200
Times (ms) Speedup Eff. (im& '(mns) Speedup Eft_.

1 3112 - - 12933 -

2 1927 1.61 80.75 7323 1.77 88.30
4 1280 2.43 60.78 3975 3.25 81.34
8 1322 2.35 29.43 2284 5.66 70.78
16 3882 0.80 5.01 1446 8.94 55.90
32 5339 0.58 1.82 1.928 6.71 20.96

With weak coherence
2 3112 - - 12933 1 8
2 1972 1.58 78.90 7323 1.77 88.30
4 1311 2.37 59.34 4016 3.22 80.51
8 923 3.37 42.15 2305 5.61 70.14
16 921 3.38 21.12 1567 8.25 51.58
32 1151 2.70 8.45 1244 10.40 32.49

Table 1: Performance results for the Jacobi loops.

single threaded execution, by appropriate insertion of synchronization and the correct updating of
shared variables. The programming model uses directives to specify shared variables and parallel

loops. A shared variable is accessible in read or write from all the processors. A non shared variable
is duplicated on all the processors. Since every processor executes the sequential code sections, non-
shared variables have always the same value. The iteration space of a parallel loop is distributed
over the processor. Each processor only executes a subset of the iteration space. Fortran-S provides
several directives to generate efficient parallel code [11].

3.3 Performance

In this section we present the first results obtained using Fortran-S on an Intel iPSC/2 with
32 nodes. The goal of these experiments was to port sequential Fortran 77 programs to Fortran-S
and to measure the performance obtained. We did not intended, in those early performance mea-

surements, to modify extensively the applications. Rather, we intended to measure performance of
Fortran-S in a straight forward translation from Fortran 77. Very few modifications have been done
to the original program. The primary modification was to expose parallel loops in the programs.
However no modification of the data structure used in the program was made. Also they were
no major modification to the algorithms, so the scalability of some application is not limited by
Fortran-S but by the algorithm used in the application. The problem of false-sharing that appears
in many applications was solved using a weak coherence protocol.

The first code used is taken from a Jacobi iteration. Table 1 gives the speedups and efficiencies
for different problem sizes when using either a strong or a weak cache coherence protocol. For a
matrix size set to 100 x 100, we got a "speed-down" when the number of processors is greater than
16. False sharing could be avoided by using weak coherence protocol. For the same problem size,
this cache coherence protocol improves the speedups a little, but the speed-up remains flat. For a
larger problem size (200 x 200) we did not observe such phenomena. However when the number of
processors is set to 32, the efficiency is bad (20.71%). The weak cache coherence protocol increases
the efficiency to 32.49%. This behavior is observed only for small matrices. For large matrices the

14

With strong coherence

proc. 100 x 100 200 x 200
iSpeedup Ef. Speedup E

1 15694 - - 127657
2 7920 1.98 99.08 64037 1.99 99.67
4 4056 3.87 96.73 32292 3.95 98.83
8 2206 7.11 88.93 16522 7.73 96.58
16 3393 4.63 28.91 8982 14.21 88.83
32 4379 3.58 11.20 5196 24.57 76.78

With weak coherence
1 15694 - 127657 -

2 7923 1.98 99.04 64036 1.99 99.68
4 4048 3.88 96.92 32276 3.96 98.88
8 2202 7.13 89.09 16521 7.73 96.59
16 1287 12.19 76.21 8972 14.23 88.93
32 884 17.75 55.48 5206 1 24.52 76.63

Table 2: Performance results for the matrix multiply.

efficiency is close to the maximum.

The second parallel algorithm we studied is the matrix multiply. Table 2 gives timing results

for small matrices (100 x 100 and 200 x 200). For larger matrix size, speedups are near from the

maximum. This can be seen in this table; for a 32 nodes configuration, speedups increase from

3.58 to 24.57 when the number of matrix elements quadruples. However, for small matrices, the

results can be improved by using the weak cache coherence protocol. Indeed, the poor performance

is always due to the same effect: "false-sharing". The same table provides timing results when the

parallel loop is executing with weak coherence. For the small matrix, the gain in performances is

impressive. When the number of processors is set to 32, speedup augments from 3.58 to 17.75.

200 x 200
proc. Strong coherence Weak coherence Weak+Broadcast

Times (s) Speedup Eiff. Times (s) Speedup Eft. Times (s) Speedup Efl.
1 125.99 - - 125.99 - - 125.99 -

2 79.34 1.59 79.40 66.34 1.90 66.34 66.69 1.89 94.46
4 64.20 1.96 49.06 37.07 3.40 84.97 37.09 3.40 84.92
8 61.59 2.05 25.57 23.99 5.25 65.65 23.04 5.47 68.35
16 65.49 1.92 12.02 20.61 6.11 38.21 16.85 7.48 46.73
32 78.79 1.60 5.00 23.62 5.33 16.67 14.88 8.47 26.46

500 x 500
1 1986.81 - - 1986.81 - - 1986.81 - -

2 1029.11 1.93 96.53 1007.51 1.97 98.60 1013.20 1.96 98.05
4 562.52 3.53 88.30 517.57 3.84 95.97 522.38 3.80 95.08
8 339.23 5.86 73.21 276.17 7.19 89.93 278.72 7.13 89.10
16 233.10 8.52 53.27 163.98 12.12 75.73 158.97 12.50 78.11
32 205.75 9.66 30.18 1 124.71 15.93 49.79 101.62 19.55 61.10

Table 3: Performance results for the MGS algorithm.

The last experiment involved the Modified Gram-Schmidt algorithm described above. This
algorithm consists of two nested loops. We added some directives in order to improve the efficiency

15

of the parallel MGS algorithm. The vector, which is modified in the sequential section, is broadcast
to every processor, since it will be accessed within the parallel loop. A weak cache coherence
protocol is also associated with the inner loop to avoid false sharing. A detailed study of this
algorithm can be found in [52, 53]. Table 3 summarizes the results we obtained with different
strategies.

Several other parallel algorithms and applications have been ported to KOAN. Their perfor-
mance results are presented in [54, 10].

4 High Performance Fortran.

Recently an international group of researchers from academia, industry and government labs formed
the High Performance Fortran Forum aimed at providing an intermediate approach in which the
user and the compiler share responsibility for exploiting parallelism. The main goal of the group
has been to design a high-level set of standard extensions to Fortran called, High Performance
Fortran (HPF), intended to exploit a wide variety of parallel architectures [28, 40].

The HPF extensions allow the user to carefully control the distribution of data across the
memories of the target machine. However, the computation code is written using a global name
space with no explicit message passing statements. It is then the compiler's responsibility to analyze
the distribution annotations and generate parallel code inserting communication statements where
required by the computation. Thus, using this approach the programmer can focus on high-level
algorithmic and performance critical issues such as load balance while allowing the compiler system
to deal with the complex low-level machine specific details.

Earlier efforts

The HPF effort is based on research done by several groups, some of which are described below.
The language IVTRAN [47], for the SIMD machine ILLIAC IV, was one of the first languages to
allow users to control the data layout. The user could indicate the array dimensions to be spread
across the processors and those which were to be local in a processor. Combinations resulting in
physically skewed data were also allowed.

In the context of MIMD machines, Kali (and its predecessor BLAZE) [45, 46] was the first
language to introduce user-specified distribution directives. The language allows the dimensions of
an array to be mapped onto an explicitly declared processor array using simple regular distributions
such as block, cyclic and block-cyclic and more complex distributions such as irregular in which the
address of each element is explicitly specified. Simple forms of user-defined distribution are also
permitted. Kali also introduced the idea of dynamic distributions which allow the user to change
the distribution of an array at runtime. The parallel computation is specified using forall loops
within a global name space. The language also introduced the concept of an on clause which allows
the users to control the distribution of loop iterations across the processors.

The Fortran D project [19] follows a slightly different approach to specifying distributions. The
distribution of data is specified by first aligning data arrays to virtual arrays knows as decompo-
sitions. The decompositions are then distributed across an implicit set of processors using relative
weights for the different dimensions. The language allows an extensive set of alignments along

16

with simple regular and irregular distributions. All mapping statements are considered executable
statements, thus blurring the distinction between static and dynamic distributions.

Vienna Fortran [14, 63] is the first language to provide a complete specification of distribution
constructs in the context of Fortran. Based largely on the Kali model, Vienna Fortran allows arrays
to be aligned to other arrays and which are then distributed across an explicit processor array. In
addition to the simple regular and irregular distributions, Vienna Fortran defines a generalized
block distribution which allows unequal sized contiguous segments of the data to be mapped the
processors. Users can define their own distribution and alignment functions which can then be
used to provide a precise mapping of data to the underlying processors. The language maintains
a clear distinction between distributions that remain static during the execution of a procedure
and those which can change dynamically, allowing compilers to optimize code for the different the
two situations. It defines multiple methods of passing distributed data across procedure bound-
aries including inheriting the distribution of the actual arguments. Distribution inquiry functions
facilitate the writing of library functions which are optimal for multiple incoming distributions.

High Performance Fortran effort has been based on the above and other related projects [8, 27,
38, 48, 58, 59, 601. In the next few sub-sections we provide, short introduction to HPF concentrating
on the features which are critical to parallel performance.

4.1 HPF Overview

High Performance FortranO is a set of extensions for Fortran 90 designed to allow specification of
data parallel algorithms. The programmer annotates the program with distribution directives to
specify the desired layout of data. The underlying programming model provides a global name
space and a single thread of control. Explicitly parallel constructs allow the expression of fairly
controlled forms of parallelism, in particular data parallelism. Thus, the code is specified in high
level portable manner with no explicit tasking or communication statements. The goal is to allow
architecture specific compilers to generate efficient code for a wide variety of architectures including
SIMD, MIMD shared and distributed memory machines.

Fortran 90 was used a base for HPF extensions for two reasons. First, a large percentage of
scientific codes are still written in Fortran (Fortran 77 that is) providing programmers using HPF
with a familiar base. Second, the array operations as defined for Fortran 90 make it eminently
suitable for data parallel algorithms.

Most of the HPF extensions are in the form of directives or structured comments which assert
facts about the program or suggest implementation strategies such as data layout. Since these
are directives they do not change the semantics of the program but may have a profound effect
on the efficiency of the generated code. The syntax used for these directives such that if HPF
extensions are at some later (late accepted as part of the language only the prefix, !HPF$, needs
to be removed to retain a correct HPF program. HPF also introduces some new language syntax
in the form of data parallel execution statements and a few new intrinsics.

t This chapter is partially based on the High Performance Fortran Language Specification draft document [281
which has been jointly written by several of the participants of the High Performance Fortran Forum. Also, the
specification (as described here) are still under review and may change when the final document is released.

17

Features of High Performance Fortran

In this subsection we provide a brief overview of the new features defined by HPF. In the next few
subsections we will provide a more detailed view of some of these features.

"* Data mapping directives: HPF provides an extensive set of directives to specify the distribu-
tion and alignment of arrays.

"* Data parallel execution features: The FORALL statement and construct and the INDEPENDENT
directive can be used to specify data parallel code. The concept of pure procedures callable
from parallel constructs has also been defined.

" New intrinsic and library functions: HPF provides a set of new intrinsic functions includ-
ing system functions to inquire about the underlying hardware, mapping inquiry functions
to inquire about the distribution of the data structures and a few computational intrinsic
functions. A set of new library routines have also been defined so as to provide a standard
interface for highly useful parallel operations such as reduction functions, combining scatter
functions, prefix and suffix functions, and sorting functions.

" Extrinsic procedures: HPF is well suited for data parallel programming. However, in order
to accommodate other programming paradigms, HPF provides extrinsic procedures. These
define an explicit interface and allow codes expressed using a different paradigm, such as an
explicit message passing routine, to be called from an HPF program.

" Sequence and storage association: The Fortran concepts of sequence and storage association§

assume an underlying linearly addressable memory. Such assumptions create a problem in
architectures which have a fragmented address space and are not compatible with the data
distribution features of HPF. Thus, HPF places restrictions on the use of storage and sequence
association for distributed arrays. For example, arrays that have been distributed can not
be passed as actual arguments associated with dummy arguments which have a different
rank or shape. Similarly, arrays that have been storage associated with other arrays can be
distributed only in special situations. The reader is referred to the HPF Language specification
document [28] for full details of these restrictions and other HPF features.

4.2 Data Mapping Directives

A major part of the HPF extensions are aimed at specifying the alignment and distribution of the
data elements. The underlying intuition for such mapping of data is as follows. If the computations
on different elements of a data structure are independent, then distributing the data structure will
allow the computation to be executed in parallel. Similarly, if elements of two data structures
are used in the same computation, then they should be aligned so that they reside in the same
processor memory. Obviously, the two factors may be in conflict across computations, giving rise
to situations where data needed in a computation resides on some other processor. This data
dependence is then satisfied by communicating the data from one processor to another. Thus, the

1lnformally, sequence association refers to the Fortran assumption that the elements of an array are in particular
order (column-major) and hence allows redimensioning of arrays across procedure boundaries, Storag2 association
allows COMMON and EQUIVALENCE statements to constrain and align data items relative to each other.

18

Abstract
processors as a

Arrays or Group of user-declared Physical
other objects aligned objects Cartesian mesh processors

ALIGN (static) DISTRIBUTE Optional
or REALIGN (static) or implementation-

(dynamic) REDISTRIBUTE dependent
(dynamic) directive

Figure 2: HPF data distribution model

main of goal of mapping data onto processor memories is to increase parallelism while minimizing
communication such that the workload across the processors is balanced.

1PF uses a two level mapping of data objects to abstract processors as shown in Figure 2.
First, data objects are aligned to other objects and then groups of objects are distributed on a
rectilinear arrangement of abstract processors.

Each array is created with some mapping of its elements to abstract processors either on entry to
a program unit or at the time of allocation for allocatable arrays. This mapping may be specified
by the user through the ALIGN and DISTRIBUTE directives or in the case where complete
specifications are not provided may be chosen by the compiler.

Processors Directive

The PROCESSORS directive can be used to declare one or more rectilinear arrangements of
processors in the specification part of a program unit. If two processor arrangements have the same
shape, then corresponding elements of the two arrangements are mapped onto the same physical
processor thus ensuring that objects mapped to these abstract processors will reside on the same
physical processor.

The intrinsics NUMBEROF..PROCESSORS and PROCESSOR-SHAPE can be used to
determine the actual number of physical processors being used to execute the program. This
information can then be used in declaring the abstract processor arrangement.

!HPF$ PROCESSORS P(N)
!HPF$ PROCESSORS Q(NUMBEROF.PROCESSORSO)
!HPF$ PROCESSORS R(8,NUMBEROFPROCESSORS()/8)
!HPF$ PROCESSORS SCALARPROC'

Here, P is a processor arrangement of size N, the size of Q (and the shape of R) is dependent
upon the number of physical processors executing the program while SCALARPROC is conceptu-
ally treated as a scalar processor.

19

A compiler must accept any processor declaration which is either scalar or whose total num-
ber of elements match the number of physical processors. The mapping of the abstract proces-
sors to physical processors is compiler-dependent. It is expected that implementors may provide
architecture-specific directives to allow users to control this mapping.

Distribution Directives

The DISTRIBUTE directive can be used to specify the distribution of the dimensions of an array
to dimensions of an abstract processor arrangement. The different types of distributions allowed

by HPF are: BLOCK(ezpr), CYCLIC(ezpr) and *.

PARAMETER (N = NUMBEROFPROCESSORSO)

!HPF$ PROCESSORS Q(NUMBEROFPROCESSORSo)
!HPF$ PROCESSORS R(8,NUMBEROFPROCESSORS()/8)

REAL A(100), B(200), C(100,200), D(100, 200)

!HPF$ DISTRIBUTE A(BLOCK) ONTO Q
!HPF$ DISTRIBUTE B(CYCLIC (5))
!HPF$ DISTRIBUTE C(BLOCK, CYCLIC) ONTO R
!HPF$ DISTRIBUTE D(BLOCK (10), *) ONTO Q

In the above examples, A is divided into N contiguous blocks of elements which are then mapped
onto successive processors of the arrangement Q. The elements of array B are first divided into
blocks of 5, which are then mapped in a wrapped manner across the processors of the arrangement
Q. The two dimensions of array C are individually mapped to the two dimensions of the processor
arrangement R. The rows of C are blocked while the columns are cyclically mapped. The one-
dimensional array D is distributed across the one-dimensional processor arrangement Q such that

the second axis is not distributed. That is each row of the array is mapped as a single object.
To determine the distribution of the dimension, the rows are first blocked into groups of 10 and
these groups are then mapped to successive processors of Q. In this case, N must be at least 10 to
accommodate the rows of D. Note, that in the case of array B, the compiler chooses the abstract
processor arrangement for the distribution.

The REDISTRIBUTE directive is syntactically similar to the DISTRIBUTE directive but
may appear only in the execution part of a program unit. It is used for dynamically changing the
distribution of an array and may only be used for arrays that have been declared as DYNAMIC.
The only difference between DISTRIBUTE and REDISTRIBUTE directives is that the former
can use only specification expressions while the latter can use any expression including values
computed at runtime.

REAL A(100)
!HPF$ DISTRIBUTE (BLOCK), DYNAMIC :: A

k _ ,...

!HPF$ REDISTRIBUTE A(CYCLIC (k))

20

Here, A starts with a block distribution and is dynamically remapped to a cyclic distribution whose
block size is computed at runtime.

When an array is redistributed, arrays that are ultimately aligned to it (see next subsection)

are also remapped to maintain the alignment relationship.

Alignment Directives

The ALIGN directive is used to indirectly specify the mapping of an array (the alignee) by spec-
ifying its relative position with respect to another object (the align-target) which is ultimately

distributed. HPF provides a variety of alignments including identity alignment, offsets, axis col-

lapse, axis transposition, and replication using dummy arguments which range over the entire index

range of the alignee. Only linear expressions are allowed in the specification of the align-target with

the restriction that a align dummy can appear only in one expression in an ALIGN directive. The

alignment function must be such that alignee is not allowed to "wrap around" or "extend past the

edges" of the align-target.

!HPF$ ALIGN A(:,:) WITH B(:,:) ! identity alignment

!HPF$ ALIGN C(I) WITH D(I-5) ! offset

!HPF$ ALIGN E(I,*) WITH F(I) ! collapse

!HPF$ ALIGN G(I) WITH H(I,*) ! replication
!HPF$ ALIGN R(I,J) WITH S(J,I) /transposition

If A is aligned to B which is in turn aligned with C then A is considered to be immediately aligned

to B but ultimately aligned to C. Note, that intermediate alignments are useful only to provide the
"ultimate" alignment since only the root of the alignment tree can be distributed.

The REALIGN directive is syntactically similar to the ALIGN directive but may appear only

in the execution part of a program unit. It is used for dynamically changing the alignment of an

array and may only be used for arrays that have been declared as DYNAMIC. As in the case

of REDISTRIBUTE, the REALIGN directive can use computed values in its expression. Note,
that only an object which is not the root of an alignment tree can be explicitly realigned and that

such a realignment does not affect the mapping of any other array.

Template Directive

In certain codes, we may want to align arrays to an index space which is larger than any of the

data arrays declared in the program. HPF introduces the concept of template as an abstract index

space. Declaration of templates uses the keyword TEMPLATE and a syntax similar to that of
regular data arrays. The distinction is that templates do not take any storage.

Consider the situation where two arrays of size N x (N + 1) and (N + 1) x N have to be aligned

sulch that bottom right corner elements are mapped to the same processor. This can be done as

follows:

21

!HPF$ TEMPLATE T(N+1,N+I)

!HPF$ REAL A(N,N+I), B(N+I,N)

!HPF$ ALIGN A(I,J) WITH T(1+1,J)
!HPF$ ALIGN B(I,J) WITH T(I,J+1)
!HPF$ DISTRIBUTE T(BLOCK ,BLOCK)

As seen above, templates can be used as align-targets and may be distributed using a DISTRIBUTE
(or REDISTRIBUTE) directives but may not be an alignee.

Procedure Boundaries

HPF allows distributed arrays to be passed as actual arguments to procedures. As noted before,
HPF places restrictions on sequence association, therefore the rank and shapo of the actual ar-
guments must match with those of the corresponding dummy arguments. HPF provides a wide
variety of options to specify the distribution of the dummy arglment. The user can specify that
the distribution of the actual argument be inherited by the dummy argument. In other cases, the

user can provide a specific mapping for the dummy and actual argument may need to remapped to
satisfy this mapping. If the actual is remapped on entry, then the original mapping is restored on

exit from the procedure. The user can also demand that the actual argument be already mapped
as specified for the dummy argument. In this case, it is incumbent upon the callee to explicitly

remap before the call to the procedure. In the presence of interface blocks such a remap may be

implicitly provided by the compiler.
HPF also provides a INHERIT directive which specifies that the template of the actual argu-

ment be copied and used as the template for the dummy argument. This makes a difference when

only a subsection of an array is passed as an actual argument. Without the INHERIT directive,
the template of the dummy argument is implicitly assumed to be the same shape as the dummy

and the dummy is aligned to the template using the identity mapping.

4.3 Data Parallel Constructs

Fortran 90 has syntax to express data parallel operations on full arrays. For example, the statement
A = B + C indicates that the two arrays B and C should be added element by element (in
any order) to produce the array A. The two main reasons for introducing these features is the
conciseness of the expressions (note the absence of explicit loops) and the possibility of exploiting
the undefined order of elemental operations for vector and parallel machines. HPF extends Fortran
90 with several new features to explicitly specify data parallelism. The FORALL statement and
construct generalize the Fortran 90 array operations to allow not only more complicated array
sections but also the calling of pure procedures on the elements of arrays. The INDEPENDENT

directive can be used to specify parallel iterations.

Forall Statement

The FORALL statement extends the Fortran 90 array operations by making the index used to
range over the elements explicit. Thus, this statement can be used to make an array assignment to

22

array elements or sections of arrays, possibly masked with a scalar logical expression. The general
form the FORALL statement is as follows:

FORALL (triplet ... [, scalar-mask])
assignment

where, a triplet has the form:

subscript = lower: upper [: stride]

Here, the FORALL header may have multiple triplets and assignment is a a,-i;hmetic or pointer
assignment. First the lower bound, upper bound and the optional stride of each triplet are evaluated
(ir. any order). The cartesian product of the result provides the valid set of subscript values over
which the mask is then evaluated. This gives rise to the active combinations. The right hand
side of the assignment is then evaluated for all the active combinations before any assignment to
corresponding elements on the left hand side.

FORALL (I=I,N, J=2,N)
A(I,J) = A(I,J-1)*B(I)

In the above example, the new values of the array A are determined by the old values of A in
the columns on the right and the array B.

Forall Construct

The FORALL construct is a generalization of the FORALL statement allowing multiple state-
ments to be associated with the same forall header. The only kind of statements allowed are
assignment, the WHERE statement and another FORALL statement or construct.

FORALL (triplet, ... [, scalar-mask])
statement

END FORALL

Here, the header is evaluated as before and the execution of one statement is completed for all
active combination before proceeding to the next statement. Thus, conceptually in a FORALL
construct, there is a synchronization before the assignment to the left hand side and between any
two statements. Obviously, some of these synchronization may not be needed and can be optimized
away.

Pure procedures

HPF has introduced a new attribute for procedures called PURE which allows users to declare
that the given procedure has no side effects. That is the only effects of the procedure are ei-
ther the value returned by the function or possible changes in the values of INTENT(OUT) or
INTENT(INOUT) arguments. HPF defines a set of syntactic constraints that must be followed

23

in order for a procedure to be pure. This allows the compiler to easily check the validity of 'he
declaration. Note, that a procedure can only call other pure procedures to rema;n pure.

Only pure functions can be called from a FORALL statement or construct. Since pure functions
have no side-effects other than the value returned, the function can be called for the active set of
index combinations in any order.

Independent Directive

The INDEPENDENT directive can be used with a DO loop or a FORALL statement or con-
struct to indicate that there are no cross-iteration data dependences. Thus, for a DO loop the
directive asserts that the iterations of the loop can be executed in any order without changing the
final result. Similarly when used with a FORALL construct or statement, the directive asserts
that there is no synchronization required between the ex.ecutions of the different values cf the active
combination set.

With a DO loop, the INDEPENDENT directive can be augmented with a list of variables
which can be treated as private variables for the purposes of the iterations.

!HPF$ INDEPENDENT, NEW(X)
DO I= 1,N

X = B(I)

A(f(I))- X

END DO I= 1,N

Here, the INDEPENDENT directive is asserting that the function f(I) returns a permutation
of the index set, i.e., no two iterations are going to assign to the same element of A. Similarly,
the new clause asserts that the loop carried dependence due to the variable X is spurious and the
compiler can execute the loops by (conceptually) allocating a new X variable for each iteration.

4.4 Examples of HPF Codes

In this section we provide two code fragments using some of the HPF features described above.
The first is the Jacobi iterative algorithm and the second is the Modified Gram-Schmidt algorithm
discussed earlier.

The HPF version of the Jacobi iterative procedure which may be used to approximate the
solution of a partial differential equation discretized on a grid, is given below.

!HPF$ processors p(number-of-processors()

real u(l:n,l:n), f(l:n,l:n)
!HPF$ align u :: f
!IHPF$ distribute u (*, block)

forall (i=2:n-l, j = 2:n-1)

u(ij) = 0.2.5 * (f(ij) + u(i-1, j) + u(i+l, j) +
u(i, j-1) + u(i, j+l)

end forall

24

At each step, it updates the current approximation at a grid point, represented by the array u,
by computing a weighted average of the values at the neighboring grid points and the value of the
right hand side function represented by the array f.

The array f is aligned with the array u using the identity alignment. The columns of u (and
thus those of f indirectly) are then distributed across the processors executing the program. The
computation is expressed using a FORALL statement, where all the right hand sides are evaluated
using the old values of u before assignment to the left hand side.

To reiterate, the computation is specified using a global index space and does not contain any
explicit data motion constructs. Given that the underlying arrays are distributed by columns,
the edge columns will have to be communicated to neighboring processors. It is the compiler's
responsibility to analyze the code and generate parallel code with appropriate communication
statements inserted to satisfy the data requirements.

The HPF version of the Modified Gram-Schmidt algorithm is given below°.

real v(n,n)
!HPF$ distribute v (*, block)

do i - l,n
tmp = 0.0

do k = l,n

tmp = trap + v(k,i)*v(ki)
enddo

xnorm = 1.0 / sqrt(tmp)
do k = l,n

v(kj) = v(k,i) * xnorm

enddo
!HPFS indepedent, new(tmp)

do j = i+l,n
tmp = 0.0
do k = l,n

tmp = tmp + v(kji)*v(kj)
enddo
do k = l,n

v(kj) = v(kj) - tmp*v(ki)

enddo
enddo

enddo

The first directive declares that the columns of the array v are to be distributed by block across
the memories of the underlying processor set. The outer loop is sequential and is thus executed by
all processors. Given the column distribution, in the ith iteration of the outer loop, the first two k
loops would be extccuted by the processor owning the ith column.

1 A Fortran 90 version of the code fragment, not shown here, would have used array constructs for the k loops.
This would make the parallelism in the inner loops explicit.

25

The second directive declares the j loop to be independent and trap to be a new variable. Thus
the iterations of the j loop can be executed in parallel, i.e., each processor updates the columns

that it owns in parallel. Since the ith column is used for this update, it will have to be broadcast
to all processors.

The distribution of the columns by contiguous blocks implies that processors will become idle
as the computation progresses. A cyclic distribution of the columns would eliminate this problem.
This can be achieved by replacing the distribution directive with the following:

!HPF$ distribute v (*, cyclic)

This declares the columns to distributed cyclically across the processors, and thus forces the inner
j loop to be strip-mined in a cyclic rather than in a block fashion. Thus, all processors are busy
until the tail end of the computation.

The above distributions only exploit parallelism in one dimension, wherea" the inner k loops
can also run in parallel. This can be achieved by distributing both the dimensions of v as follows:

!HPF$ distribute v (block, cyclic)

Here, the processors are presumed to be arranged in a two-dimensional mesh and the array is
distributed such that the elements of a column of the array are distributed by block across a
column of processors whereas the columns as a whole are distributed cyclically. Thus, the first k
loop becomes a parallel reduction of the ith column across the set of processors owning the ith
column. Similarly, the second k loop can be turned into a FORALL statement which is ex,.kuted
in parallel by the column of processors which owns the ith column. The second set of k loops,
inside the j loop, can be similarly parallelized.

Overall, it is clear, that using the approach advocated by HPF allows the user to focus on the
performance critical issues at a very high level. Thus, it is easy for the user to experiment with a
different distribution, by just changing the distribute directives. The new code is then recompiled
before running on the target machine. In contrast, the effort required to change the program if it
was written using low-level communication primitives would be much more.

5 Object Parallelism with pC++

pC++ is an experimental extension to C++ designed to allow programmers to build distributed
data structures with parallel execution semantics. These data structures are organized as "concur-
rent aggregate" collection classes which can be aligned and distributed over the memory hierarchy
of a parallel machine is a manner modeled on the High Performance Fortran Forum (HPF) di-
rectives for Fortran 90. The first version of the compiler is a preprocessor which generates Single
Program Multiple Data (SPMD) C++ code which runs on the Thinking Machines CM-5, the Intel
Paragon, the BBN TC2000 and the Sequent series of machines. As HPF becomes available on these
systems future versions of the compiler will allow object level linking between pC++ distributed
collections and HPF distributed arrays.

The basic concept of pC++ is the notion of a distributed collection, which is a type of concurrent

aggregate "container class" [15, 35). More specifically, a collection is a structured set of objects

26

distributed across the processing elements of the computer. A runtime system uses the memory
hierarchy and processor interconnect topology of the target machine to guide the distribution of
collection elements. A collection can be an Array, a Grid, a Tree, or any other partitionable data
structure.

Collections have the following components:

"* A collection class describing the basic topology of the set.

"* A size or shape for each instance of the collection class. For example, the dimensions of an
array or the height of a tree.

" A base type for collection elements. This can be any C++ type or class. For example, one
can define an Array of Floats, or a Grid of FiniteElements, or Matrix of Complex, or a Tree
of Xs, where X is the class of each node in the tree.

"* A Distribution object. The distribution describes an abstract coordinate system that will be
distributed over the available memory modules of the target by the run-time system.

"* A function object called the Alignment. This function maps collection elements to the abstract
coordinate system of the Distribution object.

The pC++ language has a library of standard collection classes that may be used (or subclassed)
by the programmer [36, 49, 17, 201. This includes collection classes such as DistributedArray,
DistributedMatrix, Distributed Vector, and DistributedGrid. To illustrate the points above, consider
the problem of creating a distributed 5 by 5 matrix of floating point numbers. We begin by building
a Distribution. A distribution is defined by its number of dimensions, the size in each dimension and
how the elements are mapped to the processors. In HPF [28] this mapping is called a distribution.
Current distributions include BLOCK, CYCLIC and WHOLE, but more general forms will be
added later. Let us assume that the distribution is distributed over the processor's memories by
mapping Whole rows of the distribution to individual processors using a Cyclic pattern where the
ith row is mapped to processor memory i mod P, on a P processor machine.

pC++ uses a special implementation dependent library class called Processors. In the current
implementation, it represents the set of all processors available to the program at run time. To
build a distribution of some size, say 7 by 7, one would write

Processor P;

Distribution myDist(7, 7, &P, Cyclic, Whole);

Next, we create an alignment object called myAlign that defines a domain and function for
mapping the matrix to the distribution. The matrix A can be defined using the library collection
class DistributedMatrix with a base type of Float.

Align myAlign(S, 5, "EALIGN(domainEi][j], myDist[i][j])]");
DistributedMatrix<Float> A(myDist, myAlign);

The collection constructor uses the alignment object, myAlign, to define the size and dimension
of the collection. The mapping function is described by a text string corresponding to the HPF

27

Igo**0XAlig
X(myTemplate, XAlig)

P(O)
• S • •..... t .

0 0 0 0 0 myAlign 40 P (0 0 E@0 00 0 *0000 0S......
Le 0 001 0 0 G00o*0

A(myTemplate, myAlign) * 0@ 0000 6 .P(3)

0"" 0 0 40 myTemplate(7,7,&PCyclic, Whole)

Y(myTemplate, YAlign);

Figure 3: Alignment and Distribution

alignment directive. It defines a mapping from a domain structure to a distribution structure using

dummy index variables.

The intent of this two stage mapping, as it was originally designed for HPF, is to allow the

distribution to be a frame of reference so that different arrays could be aligned with each other in a

manner that promotes memory locality. For example, suppose we wish to perform a matrix vector

multiply. Since the DistributedMatrix and Distributed Vector library classes provide many common

functions through C++ function overloading, a matrix vector multiply is simply written as

Y = A*X;

where X and Y are distributed arrays. While the semantic meaning and computed result of the

expression is independent of alignment and distribution, performance is best if the alignment of

the operands matches the library function for matrix vector multiply. In this case, the algorithm

broadcasts the vector operand along the columns of the array and then performs a reduction along

rows. Aligning X along with the first row of the matrix A, and Y with the first column yields the

best performance. The vectors are declared by

Align XAlign(5, "[ALIGN(X[i], myDist[O [ii)]") ;
Align YAlign(5, "[ALIGN(Y[i], myDist[i] [0])]");

DistributedVector<Float> X(myDist, XAlign);

DistributedVector<Float> Y(myDist, YAlign);

The two stage mapping process for this example is illustrated in Figure 4.

5.1 Collection Functions and Parallelism

There are two forms of concurrency in pC++. One is based on the concurrent application of a

method function, associated with the element class across the entire collection, and the other type

is associated with special functions that are invoked as a set of parallel threads one running on

each processor. More precisely, a collection is a set of element objects. A local collection is the

subset of elements mapped to one processor by the alignment and distribution functions. Each

28

local collection is realized as a Processor Object and there is an associated thread of computation
that executes all method functions that modify or access the local elements.

The memory model used by pC++ is not shared. As with HPF Fortran, there is a single main
thread of computation and parallel operations are invoked from that thread. Collection elements
are distributed over the processor objects which each have a private address space. Global data,
which can be accessed and modified by the main thread is visible to the processor objects, but a
processor object cannot modify Global data. Each processor object can read and write its local
collection of elements, but the only way a processor object or the main thread of execution can
access remote collection elements is through special kernel functions which which provide a copy of
remote collection elements.

A collection class C is a data type that is parameterized by the class of the element, C
< ElemeutType >. Collections have two types of methods: the standard public, private and pro-
tected methods of any normal class; and a set of fields and methods that are added to the element
class to provide access to the collection structure. This additional family of fields and methods are
calledI MjthodOfElement fields.

Syntactically, a collection class takes the form:

collection CollectionName: ParentCollection {
public:
private:

protected:
II Field variables declared here are local to each

1/ processor object.
1/ Methods declared here are executed in parallel by
// the associated processor object thread.

MethodOfElement:
// Field variables declared here are added to each element
II Methods declared here are added to the element class.

II These methods are the "data parallel" functions.
}

Data fields defined in the public, private and protected areas are duplicated in each processor
object. Methods in these areas are executed by the threads of the processor objects.

5.2 An Example: The Gram-Schmidt Algorithm

To illustrate these ideas we will consider the same Gram-Schmidt algorithm discussed earlier. pC++
programmers work by building collections classes derived from the base library. Because Gram-
Schmidt works on column vectors of a matrix, we will cast our matrix as a distributed collection of
column vectors. Consequently, we shall assume we have a library of double precision vectors which
have all the standard vector-vector and vector-scalar operators,

29

class Vector{
public:

Vector(int n); // a constructor.

Vector & operator *=(double); // V = V * 3.14

double dotProduct(Vector *); // the dot product

Vector & operator -=(Vector); // V = V - W

Vector operator *(double); / mult. expression

We will define a collection MyMatrix which will be a distributed array of elements of class

Vector. The matrix object and the Gram-Schmidt operation will be invoked as

maino{

Processor P;

int n a 100;

Distribution myDist(n, &P, Cyclic);

Align myAlign(n, "[ALIGN(domain[i], myDist[i])")];

MyNatrix<Vector> M(myDist, myAlign, n);
M.graxSchmidt(n);

This declares M to be a MyMatrix collection of size n of elements of class Vector. The extra

parameter n on the declaration of M is passed to the element constructor so that each vector

element has size n. The function grarnSchrnidt0 will be a processor object parallel function of the

collection which is defined as

collection MyMatrix: DistributedArray{

public:
void GramSchmidt(int n);

NethodOfElement:
void update(ElementType *);

virtual ElementType k operator *-(double);
virtual double dotProduct(ElementType *);

virtual ElementType & operator -=(ElementType);

virtual ElementType operator *(double);

The element level, data parallel functions in this collection include a method update which will be

described below, and four virtual functions which are provided by the element class which, in our

case, is Vector. Because the collection is defined separately from the element, if we wish to assume

the element has special properties, these are listed as virtual functions. In the case of the Gram-

Schmidt algorithm we need to be able to compute the dot product of vectors, multiply vectors by

a scalar and subtract a multiple of one vector from another.

The Gram-Schmidt function is nearly a direct translation of the program in section 3.0.

30

void MyMatrix::grauSchMidt(int n){
ElemeatType *v;

int i;
double temp;
for(i a 0; i < n; i++){

v = this->GetElement(i);
temp = v->dotProduct(v);
v *- 1.0 / sqrt(temp);
(*this)[i+l : n-i) .update(v);

}

In this program gramSchmidt(n) is a collection public function which means that it is invoked
on each processor object. The main loop first extract the ith column vector element. The pointer
v obtained by the kernel function GetElement(i) references a copy of the Vth element if it is not
part of the local collection of the invoking processor object. Otherwise, v references the actual
element. Notice that each processor thread then duplicates the work of computing the dot product
and normalizing its copy of v.

The element function update(v) is invoked in "data parallel" mode on each element in the local
collection that has indexes in the given subrange. In pC++ this is accomplished with an expression
of the form

collection . elementMethod()

which invokes the element method function "in parallel" on each of the elements of the collection.

To invoke the method on a subrange we use a Fortran 90 style triplet

collection [lover : upper : stride I . elementMethod()

The parallel operation update is identical to the "DoShared" loop in the Fortran-S program.

void MyMatrix: :update(ElementType *v){
double temp;
temp = this->dotProduct(v);
*this -a v*temp;

There are two further observations that should be made about this program. First, the use
of GetElement0 by each processor object can create a serial section. Each processor object
other than the owner of the 0 element will request a a copy. A more efficient program would
use a coordinated element broadcast, Element-Broadcasto, to make sure each processor object
would get a copy in the smallest amount of time. Second, and more important, is the choice of

data distribution. In our case we have selected a cyclic distribution so that as i increases in the
expression [i + 1 : i - 1].update(v), a majority of processors can participate for as long as possible.
A block distribution would decrease the parallelism much faster.

31

6 Conclusion

In this paper we have examined three different approaches to programming scientific, data-parallel

applications.
Fortran-S plus SVM provides the user with a familiar model: Fortran 77 plus annotations

to distribute loops over processors. Initial experiments with the KOAN SVM system look very
promising, but we need much more experience with large applications on large new systems before
we can declare success. In the future we expect that more shared virtual memory systems will be
implemented on a variety of inassively parallel systems. While the details of each system will vary,
the Fortran-S project demonstrates that the compiler technology exists to make this model work.

High Performance Fortran provides a high level approach to data parallel programming for a
wide variety of architecture. Initial experience has shown that the directives as currently provided
by HPF are adequate for simple scientific codes. However, it is also clear that HPF does not have
enough expressive power to specify the distributions required for other types of codes such as multi-
block and unstructured computations, adaptive computations and multi-disciplinary applications
which require integrating different types of parallel programming paradigms.

Currently there are no existing compilers for HPF; several vendors have promised initial im-
plementations in the near future. However, several research projects have built prototype com-
pilers for HPF-like languages. This includes the Kali compiler [33], the SUPERB project [671 on
which the Vienna Fortran compiler is based, the Fortran D compiler [29] and several other ef-

forts [8, 24, 27, 32, 38, 48, 58, 59, 60] that have contributed to the overall goal of compiling global
name space programs for distributed memory SIMD and MIMD machines.

pC++ is just one example of a number of efforts to add parallelism to C++. While pC++
has been ported to a wide variety of machines including the TMC CM-5, Intel Paragon, BBN
TC2000 and the KSR-1, it does have serious drawbacks. First, it relies on an extension to the

C++ language. While not a large departure from C++, the collection plus processor object model
requires considerable sophistication on the part of the user to use correctly. Also the common
alternative, building class libraries that operate in SPMD parallel execution is very popular and it
does not require extensions to the language. In the future, the success of object parallel extension
to C++ will depend on providing more functionality than Fortran-S or HPF. The feature that will
be important are heterogeneous (polymorphic), dynamic collections and nested data parallelism.

We have not attempted a complete survey of the parallel programming landscape. The three
parallel programming language extensions described here represent only a small fraction of the
approaches currently being investigated. It is clear that this is an area that will continue to
undergo rapid evolution. Different application areas may require different programming paradigms
and some multi-disciplinary problems will need a combination of programming styles.

References

[1] Scalable coherence interface. Technical report, IEEE Standard P1596, 1991.

[21 KSR parallel programming. Technical report, Kendall Square Research Corporation, February

1992.

32

[3] Porterfield A. Compiler management of program locality. Technical Report, Rice University,
Houston, Texas, January 1988.

[4] Kuck D. Abu-Sufah W. and Lawrie D. On the performance enhancement of paging system
through program analysis and transformations. IEEE Transactions on COmputers, May 1981.

[5] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19:26--34. August
1986.

[6] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN
analysis system for multiprocessing. Research Report RC 13115 (#56866), IBM T. J. Watson
Research Center, Yorktown Heights, NY, September 1987.

[7] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM
Transactions on Programming Languages and Systems, 9(4), October 1987.

[8] F. Andr6, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data distribution.
In International Conference on Supercomputing, pages 380-388, June 1990.

[9] F. Bodin, C. Eisenbeis, W. Jalby, and D. Windheiser. A quantitative algorithm for data
locality optimization. In Code Generation-Concepts, Tools, Techniques. Springer Verlag, 1992.

[10] F. Bodin, J. Erhel, and T. Priol. Parallel sparse matrix vector multiplication using a shared
virtual memory environment. In Proceeeding of the Sixth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, March 1993.

[11] F. Bodin, L. Kervella, and T. Priol. Fortran-s: A fortran interface for shared virtual memory
architectures. In Supercomputing'93, pages 274-283. IEEE, November 1993.

[12] L.M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.
IEEE Trans. on Computers., C-27(12):1112-1118, Dec 1978.

[13] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architecture for multi-
disciplinary applications: Integrating task and data parallelism. ICASE Report 94-18, NASA
CR No. 194896, Institute for Computer Applications in Science and Engineering, Hampton,
VA, 1994.

[14] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Pro-
gramming, l(i):31-50, 1992.

[15] A. Chien and W. Dally. Concurrent aggregates (CA). In Second ACM Sigplan Symposium on
Principles & Practice of Parallel Programming. ACM, 1990.

[16] Granston E. D. and Veidenbaum A. V. Integrated hardware/software solution for effective
management of local storage in high-performance systems. Proceedings of the 1991 Interna-
tional Conference on Parallel Processing, 2:83-90, 1991.

[17] J. K. Lee D. Gannon. On using object oriented parallel programming to build distributed
algebraic abstractions. In Conpar-Vap, pages 769--774. Springer Verlag, 1992.

33

[18] S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In International Conference on

Parallel Processing, pages 377-380, 1991.

[19] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. For-
tran D language specification. Department of Computer Science Rice COMP TR90079, Rice
University, March 1991.

[201 D. Cannon. Libraries and tools for object parallel programming. In Advances in Parallel bom-
puting: CNRS-NSF Workshop on Environments and Tools For Parallel Scientific Computing.

Saint Hilaire du Touvet, volume 6, pages 231-246. Elsevier Science Publisher, 1993.

[21] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for cache and local memory
management by global programming transformation. Journal of Parallel and Distributed Com-
puting, 5(5):587-616, October 1988. special issue on languages, compilers, and environments

for parallel programming.

[22] Dennis Cannon, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukaiand Srivinas Narayana, Neelakan-
tan Sundaresan, Daya Atapattu, and Francois Bodin. Sigma ii: A tool kit for building paral-
lelizing compilers and performance analysis systems. Programming Environments for Parallel

Computing, IFIP Transactions A-i1, pages 17-36, 1993.

[23] Gallivan K. Gannon D, Jalby W. Strategies for cache and local memory management by
global program transformation. Proceedings of the International Conference on Supercomput-

ing, Springer Verlag, New York, 1987 and Journal of Parallel and Distributed Computing,
October 1988.

[24] H. M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems.
PhD thesis, University of Bonn, December 1989.

[25] E.D. Cranston and H. Wijshoff. Managing pages in shared virtual memory systems: Getting
the compiler into the game. In Proceedings of the International Conference on Supercomputing,

page To appear. ACM, 1993.

[26] M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiproces-
sors. University of Illinois at Urbana-Champaign Technical Report CRHC-90-14, Center for
Reliable and High-Performance Computing, Coordinated Science Laboratory, October 1990.

[27] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality C*
compiler for hypercube machines. In 3rd A CM SIGPLAN Symposium on Principles Practice
of Parallel Programming, pages 73-82, April 1991.

[28] High Performance FORTRAN Language Specification. Technical report, Rice University, 1993.

[29] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed

memory machines. Communications of the ACM, 35(8):66-80, August 1992.

[30] Li J. and Chen M. Generating explicit communication from shared-memory progran references.
Proceedings of Supercomputing, November, 1990.

34

(31] C.F. Kesselmnan K.M. Chandy. CC++: A declarative concurrent object oriented programming
notation. In In Research Directions in Object Oriented Programming. MIT Press, 1993.

[32] K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102-
118, 1990.

[33] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execut
ion. IEEE Transactions on Parallel and Distributed Systems, 2(4):440-451, October 1991.

[34] Z. Lahjomri and T. Priol. Koan: a shared virtual memory for the ipsc/2 hypercuhe. In
CONPA R/VA PP92, September 1992.

[35] J. K. Lee. Object oriented parallel programming paradigms and environments for supercom-
puters. Technical report, Ph.D. Thesis, DCS, Indiana University, June 1992.

[36] J. K. Lee and D. Gannon. Object oriented parallel programming: Experiments and results. In
Supercomputing 91 (Albuquerque, Nov.), pages 273-282. IEEE Computer Society and ACM,
1991.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, A Gupta, and J. Hennessy. The directory-based cache
coherence protocol for the DASH multiprocessor. In Proc. of the 17th Annual Symposium on

Computer Architecture, pages 148-160, New York, May 1990. IEEE.

[38] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between
distributed arrays. Technical Report YALEU/DCS/TR-725, Yale University, New Haven, CT,
November 1989.

[39] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale Univer-

sity, September 1986.

[40] D. Loveman. High Performance Fortran. IEEE Parallel and Distributed Technology, 1:25-42,
February 1993.

[41] O'Boyle M. Program and Data Transformation for Efficient Execution on Distributed Memory
Architectures. PhD thesis, University of Manchester, 1993.

[42] E. P. Markatos and T.J. Leblanc. Using processo affinity in loop scheduling on shared memory
multiprocessors. In Supercomputing, pages 104-113, 1992.

[43] J. McGraw, S. Skedzielewski, S. Allan, R. Oldenhoeft, J. Glauert, C. Kirkham, W. Noyce,
and R. Thomas. SISAL: Streams and iteration in a single assignment language: Language
reference manual. Report M-146, Lawrence Livermore National Laboratory, March 1985.

[44] K. S. McKindley. Automatic and Interactive Parallelization. PhD thesis, Rice University, 1992.

[45] P. Mehrotra. Programming parallel architectures: The BLAZE family of languages. In Pro-
ceedings of the Third SIAM Conference on Parallel Processing for Scientific Computing, pages
289-299, December 1988.

35

[46] P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using
Kali. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances in Languages
and Compilers for Parallel Processing, pages 364-384. Pitman/MIT-Press, 1991.

[47] R. E. Millstein. Control structures in ILLIAC IV Fortran. Communications of the ACM,
16(10):621-627, October 1973.

[48] MIMDizer User's Guide, Version 7.02. Pacific Sierra Research Corporation, Placerville, CA.,
1991.

[49] F. Bodin P. Beckman D. Gannon S. Yang S. Kesavan A. Malony B. Mohr. implementing
a parallel C++ runtime system for scalable parallel systems. In Supercomputing 93. IEEE
Computer Society, 1993.

[50] D. Mosberger. Memory consistency models. ACM Operating Systems Review, February 1993.

[51] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Transactions on Computers, C-29(9):763-776, September 1980.

[52] T. Priol and Z. Lahjomri. Experiments with shared virtual memory on a ipsc/2 hypercube.
In International Conference on Parallel Processing, pages 145-148, August 1992.

[53] T. Priol and Z. Lahjomri. Trade-offs between shared virtual memory and message-passing on
an ipsc/2 hypercube. Technical Report 1634, INRIA, 1992.

[54) Because Esprit Project. Because Test Programs: BBS.2.I5.1 (Matrix Assembly), 1992.

[55] Gao G. R., Olsen R., Sarkar V., and Thekkath R. Collective loop fusion for array contraction.
5th Workshop on Languages and Compilers for Parallel Computing, pages 1-31, 92.

[56] J. Ramanujam and P. Sadayappan. Nested loop tiling for distributed memory machines. In
Proceedings of the The Fifth Distributed Memory (/omputing Conference, Charleston, SC, April
1990.

[57] M. Raynal and M. Mizuno. How to find his way in the jungle of consistency criteria for
distributed objects memories (or how to escape from minos' labyrinth. In IEEE conference on
Future Trends of DCG, 1993.

[58] A. P. Reeves and C. M. Chase. The Paragon programming paradigm and distributed mereorf)
inulticomputers. In Compilers and Runtimc Software for Scalable Multiprocessors, J. Saltz and
P. Mehrotra Editors, Amsterdam, The Netherlands, To appear 1991. Elsevier.

[59] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Conft'rcnc
on Programming Language Design and Implementation, pages 1-999. ACM SIGPLAN, June
1989.

[601 M. Rosing, R. W. Schnabel, and R. P. Weaver. Expressing complex parallel algorithms in
DINO. In Proceedings of the 4th Conference on Hypercubes, Conctirrent Computers, and
Applications, pages 553-560, 1989.

36

[61] J. Torrelas, M. S. Lamn, and J. L. Hennessy. Shared data placement optimizations to reduce
multiprocessor cache miss rates. In International Conference on Parallel Processing, pages

266-270, August 1990.

[62] Chau-Wen Tseng. An Optimizing Fortran D compiler for MIMD Distributed-Memory Ma-
chines. PhD thesis, Rice University, 1993.

[63] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings ACM SIGPLAN
91, June 1991.

[64] Lain M. Wolf M. A data locality optimizing algorithm. ACM Conference on Programming
Language Design and Implementation, pages 26-28, June 1991.

[65] M. J. Wolfe. More iteration space tiling. In Supercomputing '89, November 1989.

[66] J. Wu, J. Saltz, S. Hiranandauu, and H. Berryman. Runtime compilation methods for multi-
computers. In Proceedings of the 1991 International Conference on Parallel Proc ssing, vol-
ume [I, pages 26-30, 1991.

[67] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parl-
lelization. Parallel Computing, 6:1-18, 1986.

[6R] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language
specification. Internal Report 21, ICASE, Hampton, VA, March 1992.

37

Form Approved

REPORT DOCUMENTATION PAGE FMo mo 0704 o188

I OMBI No 0704 18

Public reporting burden for this collection of information is estimated to average I hour per response, including the ti"ne for rtirev*g instructions, statchng existing data sources.
gathering and maintaining the data needed, and completing and reviewing the coflection cf information Send comments regarding this burden estimate or any other aspect of IV-
collection of information, including suggestions for reducingih•s burden, to Washington Headquarters Services Directorate for Information Operations and Reports 121t, Jefferson
Davis Highway, Suite 1204 Arlington, VA 22202-4302, and to the Office of IManagement and Budget, Paperwork Reduction Project (0104 0 86). Washington, 20 S io0

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1994 ('ontractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DIRECTIONS IN PARALLEL PROGRAMMING: HPF, SHARED
VIRTUAL MEMORY AND OBJECT PARALLELISM IN pC++ C NAS1-19480

WU 505-90-52-01

6. AUTHOR(S)

Francois Bodin, Thierry Priol,
Piyush Mehrotra and Dennis Gannon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 94-54
Mail Stop 132(', NASA Langley Research Center
Hampton, VA 23681-00o1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-194943
Hampton, VA 23681-0001 ICASE Report No. 94-54

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
To Appear in Proceedings of Summer Inst. on Parallel Comp. Architectures, Lang. and Algorithms. IEEE Press

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category 61

13. ABSTRACT (Maximum 21?') words)
Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions
to these languages are the most popular for programming massively parallel computers. We discuss two such
approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed 11 PF
with the intent of supporting data parallelism on Fortran 90 applications. H PF works by askiag the user to help the
compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S
takes a different approach in which the data distribution is managed by the operating system and the user provides
annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent
aggregate parallel model.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Data parallel programming, high performance Fortran, Shared virtual memory, object 39
parallelism 16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-280-55Wb Standard Form 298(Rev. 2.89)
Prescribed by ANSI Std 73•30 18

*IU.S. GOVERNMFNT PRINlING OMCE: 9q4 - SZ11-64/MU14 205 02

